

Анализатор видеосигнала

CVS-VS

Руководство пользователя.

© ООО «Новые Технологии», 2009.

НАЗНАЧЕНИЕ.

CVS-VS («**Видеоскоп**») является программно-аппаратным комплексом и предназначен для анализа сигнала, прошедшего по видеотракту от камеры до устройства оцифровки на базе АЦП Вt878А.

По результатам анализа инсталлятору предоставляется информация о качестве кабельной трассы и согласующих устройств: амплитудно-частотная характеристика тракта, форма синхроимпульса и его количественные характеристики. Полученная информация позволяет оценить пригодность кабельной трассы для решения поставленных задач и, при необходимости, принять решение об установке дополнительных устройств усиления и согласования сигнала, а так же правильно провести их настройку.

Видеоскоп, состоит из внешнего устройства (*Puc.1*) и программы, включенной в состав **CVSTest**, как одна из функций под названием «**Анализ видеосигнала**» (*Puc.2*).

Рис.1. «Видеоскоп CVS-VS».

Рис.2. «CVSTest с включенной функцией «Анализ видеосигнала».

Видеоскоп чрезвычайно прост в использовании и не имеет каких-либо органов регулировок или настроек: захват и оцифровка измеряемого видеосигнала происходит полностью в автоматическом режиме.

Дополнительная функция «Измерение АЧХ камеры» (не требующая для работы устройства «CVS-VS») позволяет оценить основные параметры видеокамеры и объектива: реальное разрешение по горизонтали и вертикали, соотношение сигнал-шум, величину автоматического усиления при малой освещенности (AGC), среднеквадратичное значение шума (RMS), минимальный размер видимого объекта от поля зрения (Dmin). Более того, проведение измерений различных объективов с одной и той же камерой позволяет оценить влияние того или иного объектива на конечное изображение.

ПОДКЛЮЧЕНИЕ.

Устройство «Видеоскоп» включается в разрыв между видеовходом платы оцифровки и кабелем, идущим от камеры или устройства согласования (если такое имеется).

В случае наличия внешнего коммутатора устройство подключается между видеовходом платы оцифровки и кабелем, идущим от первого выхода коммутатора.

ТРЕБОВАНИЯ К ИСТОЧНИКУ ПИТАНИЯ.

Питание устройства может осуществляться от любого, в том числе не стабилизированного источника DC 8÷15B, рассчитанного на ток не менее 200 мА.

ИНДИКАЦИЯ.

О наличии питания на устройстве свидетельствует непрерывное свечение светодиода.

При наличии видеосигнала на входе устройства и напряжения питания - светодиод мигает с частотой приблизительно 1 Гц.

ОРГАНЫ УПРАВЛЕНИЯ.

Устройство имеет два переключателя: «Синхрогенератор/Видеосигнал» и «Нормализатор Вкл./Выкл.», а так же включаемую/отключаемую нагрузку на входе 75 Ом (*Puc.1*).

В положении переключателя «Видеосигнал» устройство транслирует сигнал камеры подключенной к разъему «Вход» на разъем «Выход».

В положении «Синхрогенератор» устройство формирует смешанный видеосигнал необходимый для проведения измерений.

В положении переключателя «**Нормализатор Вкл**.» – видеосигнал нормируется, т.е. автоматически поддерживается в заданном по стандарту уровне (синхроимпульсы 0,3 В, полный размах – 1 В), а в положении «**Нормализатор Выкл**.» – передается без изменений.

Перемычка «**Tect**» зарезервирована для производственных целей и для проведения анализа видеосигнала не используется.

ПОДГОТОВКА К ИЗМЕРЕНИЯМ.

Для запуска программы анализа видеосигнала на главной закладке **CVSTest** необходимо нажать клавишу «**Анализ видеосигнала**» (*Puc.2*). При этом появится отдельное окно (*Puc.3*).

Установите значение параметра «Коррекция АЧХ» (*Puc. 3*) в положение 6 (стандартная характеристика АЦП Вt878А).

В скобках после слова «Камера» (*Puc.3*) указываются номера камер в системе. Кнопками «больше» - «меньше» задайте требуемый номер камеры.

а) При использовании внешних коммутаторов и подключении устройства Видеоскоп между первым выходом соответствующего коммутатора и платой оцифровки – заданная камера будет подключаться на первый выход коммутатора автоматически.

в) В системах без внешнего коммутатора следует вручную переключать устройство Видеоскоп в разрыв, между кабелем, идущим от заданной камеры и соответствующим входом платы оцифровки.

Можно поступить так же следующим образом: в окне камера задать любой номер камеры, подключить устройство **Видеоскоп** к соответствующему входу платы оцифровки, и поочередно подключая кабели от всех камер провести измерения.

В любом случае, перед проведением измерений по миганию светодиода убедитесь, что на устройство подано напряжение питания и что на его входе присутствует видеосигнал.

Переведите верхний переключатель устройства в положение «Видеосигнал» и по изображению на экране убедитесь, что это сигнал именно с той камеры, параметры видеотракта которой вы собираетесь измерить.

ПРОВЕДЕНИЕ ИЗМЕРЕНИЙ.

Измерение АЧХ линии.

Переведите верхний переключатель устройства в положение «Синхрогенератор», а нижний переключатель - в положение «Нормализатор Выкл».

Нажмите кнопку «Линии» - на экране компьютера появится изображение синхроимпульса (*Puc.3*). Если необходимо приостановить измерение – нажмите кнопку «Пауза».

Рис.3. «Анализатор видеосигнала».

Синхроимпульс.

Форма синхроимпульса должна быть прямоугольной, без переколебаний, выбросы не должны превышать 0,1В. Параметры синхроимпульса отображаются в таблице справа: название параметра, измеренное значение и допустимое значение.

Цвет текста в строке параметра зависит от измеренной величины:

- точное значение черный цвет,
- допустимое значение зеленый цвет,
- предельно допустимое значение желтый цвет,
- недопустимые значения красный цвет.

На осциллограмме (*Puc.3*) представлен пример синхроимпульса и цветовой пачки синхронизации (присутствует только у цветных камер) при прохождении видеосигнала через 100м кабеля RG59.

Амплитуда синхроимпульса.

Пожалуй, один из главных параметров, поскольку полный размах видеосигнала (1,0В) достигается при амплитуде синхроимпульса 0,3В. Поэтому для контроля амплитуды видеосигнала достаточно измерить амплитуду синхроимпульса.

Стандартное значение 0,3В.

- 6 -

Цвет текста в данной строке зависит от измеренной амплитуды синхроимпульса:

- точное значение 0,299-0,301 черный цвет,
- допустимое значение 0,261-0,315 зеленый цвет,
- предельно допустимое значение 0,221-0,260 желтый цвет,
- недопустимые значения (меньше 0,221 и больше 0,315) красный цвет.

Если в цепи имеются усилители – установите стандартное значение амплитуды синхроимпульса. Для видеосигнала с амплитудой синхроимпульса отличающейся от стандартной в 0,5-2 раза можно использовать нормализатор, он автоматически приведет амплитуду синхроимпульса к стандартному значению.

Обратите внимание:

белое изображение от камеры на экране монитора (большая амплитуда видеосигнала) при нормальном значении амплитуды синхроимпульса свидетельствует о неисправности камеры или некачественном устройстве согласования (ограничение или подрезка синхроимпульса).

Длительность импульса.

Стандартное значение 4,7 мкс.

Отклонение от 50 Гц.

Данный параметр характеризует частоту кадровой развертки камеры. У камер с кварцевыми генераторами .отклонение обычно не превышает 0,1%, у камер без кварца или с синхронизацией от сети оно может превышать 1%. Камеры с отклонением данного параметра более 2% в ту или иную сторону следует считать неисправными.

Амплитуда пачки 4,43 МГц (только для цветных камер).

Стандартное значение 0,286В; количество периодов в пачке – от 8 д10.

Подавление цвета (только для цветных камер).

Уменьшение цветовой составляющей в дБ по отношению к стандартному значению.

Сопротивление кабеля.

Показывает суммарное омическое сопротивление кабеля (при отсутствии усилителей). При наличии усилителей данное значение необходимо привести к нулю соответствующими регулировками.

Идентификация до (ТВЛ).

Указывает разрешение в ТВЛ, при котором модуляция сигнала на кабельной трассе уменьшается в 1,4 раза. При этом теоретически можно идентифицировать объект, т.е. определить «что это».

Обнаружение до (ТВЛ).

Указывает разрешение в ТВЛ, при котором модуляция сигнала на кабельной трассе уменьшается в 2 раза. При этом теоретически можно обнаружить «что-то».

АЧХ.

Амплитудно-частотная характеристика показывает изменение относительной модуляции для различных разрешений. Идеальная АЧХ – это прямая на уровне единицы. Рекомендуемая АЧХ для целей идентификации объекта должна изменяться не более чем на +/- 3 дБ (зеленая область), для целей обнаружения – на +3/-6 дБ (желтая и зеленая области).

Если на кабельной трассе имеются корректоры, стремитесь добиться полной компенсации потерь на кабеле, т.е. прямолинейной АЧХ. Не отчаивайтесь, если этого не произойдет - идеальных устройств не существует.

В данной программе анализа видеосигнала реализовано два различных способа измерения АЧХ. Для выбора способа измерения служат соответствующие переключатели «**АЧХ тип 1**» и «**АЧХ тип 2**». АЧХ с минимальными переколебаниями будет более верной.

В программе **CVSCenter** имеется движок «**Чёткость**» на закладке «**Изображение**» в настройках камер - это, собственно, и есть дополнительный корректор АЧХ, его действие можно проверить в данной программе.

Установив значение параметра «Коррекция АЧХ» (*Puc. 3*) в положение 7 и включив нормализатор видеосигнала, потери, как по амплитуде синхроимпульса, так и по разрешению (или по частоте) в нашем примере будут скомпенсированы практически полностью (*Puc.4*). После такой коррекции для данной кабельной трассы разрешение практически будет определяться только разрешением камеры и разрешением устройства видеоввода.

Калибровка.

Исходно устройство **Видеоскоп** прокалибровано. Возврат к исходным калибровкам осуществляется нажатием кнопки «**Сброс**» (*Puc. 3*). При необходимости можно прокалибровать устройство более точно (улучшение до нескольких процентов).

Для этого:

1. Убедитесь, что амплитуда синхроимпульса находится в пределах 0,17-0,27 В. Если амплитуда синхроимпульса выше - добавьте на видеовходе устройства дополнительную

нагрузку 75-150 Ом (через тройник), или подключите камеру, у которой амплитуда синхроимпульса имеет такое значение.

2. Переведите на устройстве переключатель «**Нормализатор**» в положение «**Вкл.**», дождитесь установившейся амплитуды синхроимпульса (примерно 3÷5 с) и в меню программы нажмите кнопку «**Нормализатор**». В результате будет произведена дополнительная калибровка вашего устройства по стандартному синхроимпульсу амплитудой 0,3 В.

3. Выключите нормализатор и проведите измерения с большей точностью.

Данную процедуру достаточно провести однократно, т.е. при подключении других камер к устройству или переключении камер на коммутаторе дополнительных калибровок проводить не требуется.

Неправильные действия инсталлятора при калибровке автоматически блокируются, на экран компьютера при этом выводятся соответствующие сообщения об ошибках.

ИЗМЕРЕНИЕ АЧХ КАМЕРЫ.

Измерение технических характеристик видеокамеры с помощью программы анализа видеосигнала не требует наличия устройства **Видеоскоп**.

Для перехода в режим измерения параметров камеры нажмите кнопку «Камеры» (Puc.4).

Перед проведением измерений выполните следующие действия:

1. Подготовьте лист белой бумаги, на котором нарисован наклоненный черный квадрат (достаточно распечатать страницу Приложение 1) и закрепите его на ровной вертикальной поверхности.

2. Расположите камеру на одном уровне с квадратом и <u>направьте ее на центр квадрата</u>. Квадрат на изображении <u>должен быть наклонен под небольшим углом</u> (5 -10 градусов) по отношению к полю зрения камеры. Размеры квадрата на изображении должны составлять от 1/2 до 1/3 от поля зрения камеры по горизонтали (*Puc. 4*).

3. Лист бумаги, на которой изображен квадрат, должен быть достаточно и равномерно освещен.

4. Тщательно настройте резкость. Для этого можно воспользоваться вертикальным индикатором **Резкость** (чем выше показания индикатора – тем лучше).

Рис.4. «Измерение разрешения камеры».

Для корректного измерения АЧХ установите размер матрицы, используемой в камере (на рисунке установлен размер 752х576).

В правой части окна программы отображена таблица с измеренными параметрами камеры. Они включают в себя:

- АЧХ камеры по горизонтали и вертикали (представлены ниже на графике кривыми соответствующего цвета: горизонталь, вертикаль).
 - Соотношение сигнал/шум.
 - AGC величина автоматического усиления при малой освещенности.
 - RMS среднеквадратичное значение шума.
 - Dmin минимальный размер видимого объекта от поля зрения.

Измерение соотношения сигнал/шум.

Убедитесь что камера и изображение неподвижны и не подвержены каким-либо вибрациям. Нажмите кнопку «Сигнал / шум».

Измерение AGC.

После измерения соотношения сигнал/шум полностью закройте объектив камеры и нажмите кнопку «**AGC**».

ПЕЧАТЬ И СОХРАНЕНИЕ ПАРАМЕТРОВ.

Полученная информация может быть распечатана (кнопка «**Печать**») или сохранена (кнопка «**Сохранить**») в отдельный файл (*Puc.5*). Текст из поля «**Комментарий**» будет добавлен к имени сохраняемого файла.

Рис.5. «Сохранение результатов работы CVS-VS».

Сохранение результатов по нажатию кнопки «Сохранить» производится в ту же папку, в которой находится программа CVSTest. Если запуск программы осуществлен с компакт-диска CVS, то сохранение снимка осуществляется на рабочий стол пользователя Windows.

<u>р</u> айл і	Правка <u>В</u> ид <u>И</u>	збранное (С <u>е</u> рвис <u>С</u> правк	a				_ 🗆 🗶
🔄 🕞 Наза	ад т 💮 т 💋	🦻 🔎 Пон	иск 🔀 Папки		× 9	🛄 • 📑	· 💣 👘	
Apper: □ D:\CD CVS 68 Next\! □								
	-	M FC	1		٠	1	٠	
ipp20)	AxisA.dll	cvs_vs	CvsTele.dll	CvsTest	ijl15.dll	ipps20.dll	MDrDII.dll	
і Объектов: 8	Эбъектов: 8					😼 Мой компьют	гер	

Рис. 6. «Список файлов для работы видеоскопа».

ПРИЛОЖЕНИЕ 1.

Черный Квадрат Малевича-Новикова *.

* Угол наклона квадрата 5 градусов.

ПРИМЕЧАНИЕ.

- 1. Программа анализа видеосигнала поддерживает работу по сети. Для этого необходимо выполнить следующие действия:
 - Завершить работу CVSTest (если запущен). Запустить программу анализа видеосигнала (cvs_vs.exe).
 - В программе нажать в правом-верхнем углу кнопку «CVS». В появившемся окне добавить сервер(а) CVS.
 - В CVSCenter для интересующей камеры произвести настройки: во вкладке «Состояние» установить движок «Разрешение» в позицию со значением 896; движок «Ускорение» в «Норма» или «Минимум»; отключить «Активность» и «Движение». Во вкладке «Изображение» нажать «По умолчанию»; отключить «Устранение шумов», «Деинтерлейс» и «Дельта-сжатие».
 - Для измерения АЧХ камеры (черный квадрат) установите в CVSCenter интересующую камеру в режим «Кадр», для измерения АЧХ линии в режим «Поле».
 - Коррекция АЧХ выполняется движком «Четкость» во вкладке «Изображение» в настройках камеры в CVSCenter.
- Программа анализа видеосигнала поддерживает вывод изображения с использованием аппаратного ускорения для уменьшения нагрузки на процессор (актуально для малопроизводительных компьютеров). Для включения этой функции нужно воспользоваться переключателем «DirectDraw» в правой-верхней части окна программы.